Photonic crystal composites-based wide-band optical collimator

نویسندگان

  • Jinjie Shi
  • Bala Krishna Juluri
  • Sz-Chin Steven Lin
  • Mengqian Lu
  • Tieyu Gao
  • Tony Jun Huang
چکیده

Photonic crystal PC composites are sequenced series of PCs that feature the same periods but different filling fractions. By properly tuning the filling fractions of the individual PCs and merging the working band of each PC into a continuous frequency range, wide-band self-collimation of optical signals can be realized. The band diagrams and the equal-frequency contours of the PC structures were calculated through the plane wave expansion method and the finite-difference time-domain method was employed to simulate the propagation of electromagnetic waves through the PC structures. Our results show that while a single PC can only collimate optical waves over a narrow frequency range, a PC composite exhibits a much wider collimation band. Such a wide-band optical collimation lens can be useful in applications that demand directional optical energy flow over a long distance, such as optical imaging and biosensing. © 2010 American Institute of Physics. doi:10.1063/1.3468242

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation

In this paper, a photonic crystal waveguide with point defects and lattice constant perturbations of +5%, -5% are being investigated. Firstly waveguide structures with constant and specific parameters are being studied and photonic band gap diagrams for TE/TM modes are depicted; then pulse propagation in the frequencies available in the band gap are shown. After that, effects of parameters like...

متن کامل

All optical 1 to 2 decoder based on photonic crystal ring resonator

In this paper we combined an optical mixer via photonic crystal ringresonator to propose an all optical 1 to 2 decoder. The main idea used in this paper isbased on controlling the optical behavior of the resonant ring via optical powerintensity. We know that resonant wavelength of the photonic crystal ring resonator isvery sensitive upon the refractive index of dielectric rods, on the other had...

متن کامل

Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators

Abstract: In this paper, we aim to design and propose a novel structure for all-opticalhalf subtractor based on the photonic crystal. The structure includes two optical switches,one power splitter, and one power combiner. The optical switches are made of theresonant rings which use the nonlinear rods for dropping operation. The footprint of thedesigned structure is about...

متن کامل

The effect of cells' radius on optical filter output spectrum based on photonic crystals

In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...

متن کامل

The New Design and Simulation of an Optical Add Drop Filter Based On Hexagonal Photonic Crystal Single Ring Race Track Resonator

In this paper, using annular resonator we have designed an adding and dropping filter light based ontwo-dimensional photonic crystals. The shape of ring resonator filter adding and dropping that wehave proposed is Race Track. This filter has a hexagonal lattice structure of silicon bars withrefractive index 3/46 that is located in the context of air with refractive index 1. Transmissionefficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010